DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription
نویسندگان
چکیده
Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28-42; region 2, 66-112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription.
منابع مشابه
Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes.
A precise balance between protein degradation and synthesis is essential to preserve skeletal muscle mass. Here, we found that TP53INP2, a homolog of the Drosophila melanogaster DOR protein that regulates autophagy in cellular models, has a direct impact on skeletal muscle mass in vivo. Using different transgenic mouse models, we demonstrated that muscle-specific overexpression of Tp53inp2 redu...
متن کاملP-203: Examination of FMR1 Gene Transcription and Protein Expression in Patients with Diminished Ovarian Reserve Reffered to Royan institute
Background: Diminished ovarian reserve (DOR) is a primary infertility disorder characterized by a reduction in the number and/or quality of oocytes, usually accompanied by high follicle-stimulating hormone (FSH) levels and regular menses. DOR aetiology factors are different, such as genetic factors, ageing, autoimmune disorders, adrenal gland impairment factors and iatrogenic causes, e.g. chemo...
متن کاملmiR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy
The present study identified miR-638 as one of the most significantly overexpressed miRNAs in metastatic lesions of melanomas compared with primary melanomas. miR-638 enhanced the tumorigenic properties of melanoma cells in vitro and lung colonization in vivo. mRNA expression profiling identified new candidate genes including TP53INP2 as miR-638 targets, the majority of which are involved in p5...
متن کاملTP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells
Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing of TP53inp1 was done via lentiviral transfection of...
متن کاملMiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1.
OBJECTIVE MiR-30a and miR-205 are two miRNAs downregulated in prostate cancer and are involved in autophagy regulation. However, how they are downregulated in prostate cancer is still not clear. In this study, we firstly investigated the association between miR-30a and miR-205 downregulation and hypoxia in prostate cancer. Then, we further investigated the regulative effect of miR-30a on TP53IN...
متن کامل